
Flashy
User Guide

Utility to programme the flash memory on the DTH

Revision: 17 (8 Jun 2020)

Authors: Christoph Schwick, Dominique Gigi, Jeroen Hegeman

CMS/CMD Group
Software Documentation

2

Table of Contents

Document Revisions...3
1 Introduction...4

1.1 The flash chip of the DTH...4
2 Installation...4

2.1 Installation from the sources:...5
3 Usage...6

3.1 FlashConverter...6
3.1.1 Invocation:...6

3.2 Flashy...6
3.2.1 Invocation...6
3.2.2 Checking for empty sectors..7
3.2.3 Load FPGA firmware from the Flash..8
3.2.4 The Advanced menu...8
3.2.5 Further command line options...8
3.2.6 Batch mode..8

4 Preparing a firmware image for the Flashy utility...10
4.1 Bitstream options to choose when generating the bitfile of the firmware...............................10

4.1.1 General...10
4.1.3 Configuration...12
4.1.4 Configuration Modes...13
4.1.5 Startup..13
4.1.6 Encryption, Readback and Authentication...13

4.2 Generate an mcs file with Vivado..13
5 Appendix..15

5.1 XDAQ yum repository for xdaq version 15..15

3

Document Revisions

Revision Date Comment

9 2020-01-14 First version of the document

14 2020-04-17 Added support for the TCDS fpga. New batch mode.

16 2020-06-08 Version for the first release of the DTH Kit

4

1 Introduction
The DTH contains two main FPGAs. The first is mainly performing tasks for the DAQ system
whereas the other one performs the tasks for the TCDS system. Both FPGAs load their firmware at
power up from a dedicated flash memory chip. The capacity of these memory chips is large enough
to hold multiple firmware images. Since the images are compressed their size varies and therefore it
is not possible to exactly say how many images can be loaded into the the flash chips.

This User Guide describes the software utilities used to write images into the flash chip, to erase
regions of the flash chip or to protect regions of the flash chip from accidental overwriting. Further
the utilities contains a series of functions for debugging or advanced usage.

Flashy is a python command line utility which uses the package “consolemenu” to display ASCII
menus. In order to accelerate the process of programming an image file into the flash chip Flashy is
calling a programme written in C++ with the name “FlashProgrammer”.

The packages contains an additional C++ programme called “flashConverter”. This programme can
be used to convert an image file for the FPGA firmware in INTEL format (.mcs) to a binary file
which can be written to the flash memory by the Flashy programme.

1.1 The flash chip of the DTH

The flash memory chips deplyed on the DTH are of the type SL29GL01GS (Cypress). This chip
features 1Gbit of flash memory organised in 1024 sectors of 128kBytes each. Sectors can be
individually erased or written or protected in various ways against accidental programming or
erasing. The Flashy utility supports one mode of protection where a non volatile bit per sector is
used to inhibit programming or erasing the sector by setting the bit to 1. This protection can be
removed by resetting the respective protection bit to ‘0’.

As usual with these type of flash chips, erasing a sector sets all bits in the sector to ‘1’ and
programming means setting selected bits to ‘0’. Programming or erasing the chip takes substantial
time (order of minutes), so please be patient during these operations.

Data is organised in words of 16bit (i.e. a 16 bit data bus is available at the output of the chip). This
has consequences on how to specify addresses for the flash chip in the software. Addresses are in
terms of 16 bit words (i.e. one address addresses 2 bytes. Addresses are incremented by one to go to
the next 16 bit word.)

2 Installation
The software is distributed as part of the DTH-Kit software via an RPM. The yum repository for
this software is housed at gitlab at CERN:

https://gitlab.cern.ch/dth_p1-v2/cmd_dth.yum

5

https://gitlab.cern.ch/dth_p1-v2/cmd_dth.yum

The DTH-Kit software is pre-installed on the DTH-Kits delivered to sub-detectors. Therefore these
installation instructions are only given for reference and can be skipped by users of the DTH-Kit.

To install the DTH-Kit software you can add the yum-repository to your system and then install the
RPM with the following commands executed as super user:

curl https://gitlab.cern.ch/dth_p1-v2/cmd_dth.yum/raw/master/DTH-Kit_p1_v2.repo
-o /etc/yum.repos.d/DTH-Kit_p1_v2.repo

yum -y install dth_software_kit

Flashy depends on the XDAQ HAL library and the xpci kernel driver to access the flash chip of the
DAQ FPGA. Sources and binaries of the xpci driver are available in the yum repository. HAL needs
to be installed via the standard xdaq installation procedure.

The configuration file of the xdaq repository is listed in the Appendix. It should be installed into etc/
yum.repos.d/. To install the HAL library the core and the worksuite groups should be installed with
the following commands (as root):

yum -y group install --skip-broken cmsos_core cmsos_worksuite

(the –skip-broken flag avoids that the installation fails due to some missing dependencies of the
AMC13 software which is not needed)

For the TCDS FPGA uHAL and the XILINX xdma driver need to be installed. uHAL can be
installed via a dedicated yum repository. The repository and the software can be installed with the
following commands (executed as root):

curl http://ipbus.web.cern.ch/ipbus/doc/user/html/_downloads/ipbus-
sw.centos7.x86_64.repo -o /etc/yum.repos.d/ipbus-sw.repo

yum -y groupinstall uhal

The xdma driver is provided by the DAQ group in form of 2 RPMs available from the yum
repository of the DTH-Kit software. They are isntalled with the commands (as root)

yum install kmod-xdma_tcds2 xdma_tcds2

Be aware that the installation of the xdma driver (kernel module) takes a very long time (many
minutes) on ComExpress board. Do not interrupt this installation.

2.1 Installation from the sources:

The sources are included in the git repository for the DTH software. This can be checked out with
the command

git clone https://gitlab.cern.ch/dth_p1-v2/ dth_software .git

6

https://gitlab.cern.ch/dth_p1-v2/dth_software.git
https://gitlab.cern.ch/dth_p1-v2/dth_software.git
https://gitlab.cern.ch/dth_p1-v2/dth_software.git

Before using the utility the C++ programmes need to be compiled. For this it is assumed that
XDAQ together with the worksuite and the uHAL software are installed on the computer (see
above).

To compile the C++ programms simply type do

cd flash_config
make

To use the software for debugging purposes from the directories of the git repository the target
“pylocal” can be used. It sets up a directory structure with symbolic links to the software together
with a file setting environment variables when sourced. To use this feature type

make pylocal
cd pylocal
source pythonpath.sh

Then the DTH_Flashy can be executed with

python ./DTH_Flashy.py --fpga {daq|tcds}

3 Usage
To use the software the LD_LIBRARY_PATH of your environment must include the path the the
XDAQ libraries:

export LD_LIBRARY_PATH=/opt/xdaq/lib

The following paragraphs explain the usage of the various utilities.

3.1 FlashConverter

3.1.1 Invocation:

FlashConverter {filename}

filename is a firmware file created with the Vivado tools in INTEL mcs format (extension “.mcs”).
The utility will create a new file with the same name but the extension “.bin” which will the same
firmware in binary format ready to be written into the flash chips of the DTH board.

3.2 Flashy

3.2.1 Invocation

Flashy.py --fpga {daq|tcds} [--debug]

7

The required parameter --fpga chooses the flash chip to work with: the flash of the DAQ FPGA or
the flash of the TCDS FPGA.

The DAQ and the TCDS FPGAs implement different PCIe endpoints with their respective Device
Ids, therefore the parameters change according to the flash chip you want to access with Flashy.

Once started the main menu is presented to the user:

 ┏━━━┓
 ┃ ┃
 Flashy ┃ ┃
 ┃ ┃
 Tools for the flash memory on the DTH ┃ ┃
 ┃ ┃
 ┣━━━┫
 ┃ ┃
 1 - Dump Information about flash memory ┃ ┃
 2 - Write content of binary bitstream file to the flash ┃ ┃
 3 - Compare file content to content in the flash ┃ ┃
 4 - Check for blank sectors in flash chip ┃ ┃
 5 - Erase one or many sectors ┃ ┃
 6 - Erase entire flash chip ┃ ┃
 7 - Load FPGA firmware from Flash ┃ ┃
 8 - Advanced and Debug menu ┃ ┃
 9 - Exit ┃ ┃
 ┃ ┃
 ┃ ┃
 ┗━━━┛
 SELECT>

The menu items are mostly self explaining. They are selected by typing the number of the item on
the keyboad. Some actions will display information on the screen. To get back to the menu the user
should hit “Enter”.

The first menu point is useful to see if the general interface to the flash chip is operational.

Several menu points ask you to specify an address of the flash chip. In general two formats are
accepted: If you want to specify the startaddress of a given sector you can so this by typing the
letter ‘s’ followed by the sector number (starting with sector number 0, being the first sector). A
decimal or hexadecimal address can also be given (hexadecimal preceeded by the prefix 0x). Note
that addresses given as numbers address 16bit words: Hence to address the byte 32 and 33 in the
flash you would have to specify the address 16 or 0x10.

3.2.2 Checking for empty sectors

The output of the 4th menu point is compressed in order to avoid to display 1024 data records for the
1024 sectors in the chip. Starting with sector ‘0’ the programm will go through the flash memory
and check for each sector if it is erased (all bits on ‘1’) or not. It will only print out a message when
the state of a sector is different from the previous sector. This will allow you to determine the empty

8

and the programmed regions of the flash chip (with a granularity of an entire sector). An example
output for a flash chip containing 5 firmware images is given below:

An empty sector: 92 11.5MB adr: 00b80000
A non empty sector: 100 11.5MB adr: 00c80000
An empty sector: 194 24.2MB adr: 01840000
A non empty sector: 200 24.2MB adr: 01900000
An empty sector: 294 36.8MB adr: 024c0000
A non empty sector: 300 36.8MB adr: 02580000
An empty sector: 392 49.0MB adr: 03100000
A non empty sector: 400 49.0MB adr: 03200000
An empty sector: 492 61.5MB adr: 03d80000
Dump of Flash Timer
 1) Chip blank check 00h 00m 3.935s acc: 00h 00m
3.935s

3.2.3 Load FPGA firmware from the Flash

In this option the software is saving the contents of the PCI configuration to internal memory and
then reloading the FPGA with an image from the flash. The user has to specify the sector where the
firmware image starts. After programmation the PCI configuration is written back to the PCI
interface of the firmware so that the host computer does not crash when trying to access the DTH.
Note that this only works if previously the DTH was running a firmware with the same PCIe
configuration parameters and the DTH was successfully detected by the PC. During routine
firmware upgrades this is normally the case. But exceptionally a reboot might be necessary to make
the PC aware of PCI configuration changes (e.g. the requested memory space of a BAR has been
increased).

3.2.4 The Advanced menu

In the advanced menu small regions of the flash memory can be accessed (either for reading or
writing). In this menu you also find the possibility to check the protection bits of the sectors or to
set or unset them. It is only possible to unprotect all sectors of the flash chip at onces. Hence to
change the protection ALL protected regions need to be re-specified after the erasing of the
protection (this is due to the fact that the protection bits themselves are flash memory bits which can
only be erased as a group, like the bits in a sector).

In this menu you also find special commands to try to get the flash in a well defined state in case
some previous operation failed: you can exit the ASO (Address Space Overlay) mode which is used
by most of the commands of the flash chip, and you can abort an ongoing writing of a line Buffer (a
mode used to efficiently write large blocks to the flash memory).

3.2.5 Further command line options

DTH_Flashy accepts some additional command line options.

--help : prints usage information

9

--debug : allows to inspect standard output and error output of the programme for debugging
 purposes. (During normal operation the console menus regularly clear the screen which
 makes reading the output impossible)

--batch : batch mode operation (see next section)

3.2.6 Batch mode

The option –batch allows some operations to be executed in batch mode (for usage in scripts for
example)

To operate in batch mode DTH_Flashy needs to be invoked in the following way:

DTH_Flashy.py --batch --command {command} [parameter options]

The following table lists the supported batch commands with their required parameter options

command parameters comment

program --file
--start_adr

Programs the flash chip with the binary content of a file
containing a firmware image. --file indicates the path to
the binary image file. --start_adr indicates the first
sector in the flash where to start the programming. As in
interactive mode the start address can be given as a sector
number in which case it must be preceded by the letter ‘s’
(e.g. s100 indicates sector 100) or it can be given as an
address (decimal or hexadecimal with the prefix 0x. Be
aware that addresses have to indicate the first address of a
sector. Addresses are given in units of bytes.)

verify --file
--start_adr

Compares the flash chip contents with the binary content of
a file. --file indicates the path to the binary image file. --
start_adr indicates the first sector in the flash where to
start the programming. As in interactive mode the start
address can be given as a sector number in which case it
must be proceeded by the letter ‘s’ (e.g. s100 indicates
sector 100) or it can be given as an address (decimal or
hexadecimal with the prefix 0x. Be aware that addresses
have to indicate the first address of a sector. Addresses are
given in units of bytes.)

unprotect Unprotects all sectors of the chip (including the sectors
containing the “golden design”!) Normally this is only used
in order to change the protected sectors, i.e. this command is
followed by a protect command.

protect --start_sector
--num_sector

Protect a region of the flash chip against accidental erasing

10

command parameters comment

or programming. start_sector is a number between 1 and
1023 and num_sector specifies the number of sectors to
protect starting from start_sector.

eraseAll Erases the entire chip (except for sectors which are
protected)

erase --start_sector
--num_sector

Erases a region of the flash chip. start_sector is a number
between 1 and 1023 and num_sector specifies the number of
sectors to erase starting from start_sector.

loadFPGA --start_adr Loads the firmware which is at the specified address in the
Flash memory. The format of the start_adr is the same as for
the “program” and “verify” commands.

4 Preparing a firmware image for the Flashy utility
This chapter documents how to prepare a DTH firmware file ready to be written to the flash
memory with Flashy. This operation is executed by the DAQ group and users of the DTH can skip
this chapter.

4.1 Bitstream options to choose when generating the bitfile of
the firmware

If the implemented design is opened choose the Settings of the Project Manager and subsequently
the Bitstream settings. Inside go to the link “Configure additional bistream settings”)

What follows is a set of screen shots for the settings in the various categories.

11

4.1.1 General

12

4.1.2

13

4.1.3 Configuration

14

Remark: The hex value under “Watchdog Timer value in Configruation mode” corresponds to
27000000 which results in 3.375s timeout with a 8MHz configuration clock. This means that if the
configuration does not terminate successfully after 3.375 seconds the golden design at addresse 0 of
the flash memory will be automatically loaded.

4.1.4 Configuration Modes

Choose Mster BPI x16

4.1.5 Startup

4.1.6 Encryption, Readback and Authentication

Do not change any settings from the defaults (security features selected)

4.2 Generate an mcs file with Vivado

1. In Vivado open the implemented design for which you want to create a firmware image.

2. Under Tools choose “Generate Memory Configuration file”

15

3. Choose MCS format (default)

4. Choose an output filename (use the file browser button on the right)

5. For Memory Part choose s29gl01gs-bpi-x16 (Spansion – 1024Mb)

6. Click on “Load bistream files” and direct the Bifile browser to your toplevel bitfile
({top_hierachy_module_name}.bit in the implementation directory)

The programme will produce an mcs file from the bitfile of your design. In the TCL console you
find the command to do the same thing programmatically on the console.

This file you can use as an input to the programme “FlashConverter” which will produce a .bin file
which you can use to programme the flash with the Flashy.py utility as described above.

16

5 Appendix

5.1 XDAQ yum repository for xdaq version 15
[xdaq]
name=XDAQ Software Core
baseurl=http://xdaq.web.cern.ch/xdaq/repo/core/15/cc7/x86_64/RPMS/
enabled=1
gpgcheck=0

[xdaq-worksuite]
name=XDAQ Worksuite
baseurl=http://xdaq.web.cern.ch/xdaq/repo/worksuite/15/cc7/x86_64/RPMS/
enabled=1
gpgcheck=0

[xdaq-development]
name=XDAQ development master
baseurl=http://xdaq.web.cern.ch/xdaq/repo/development/core/master/cc7/x86_64/RPMS/
enabled=1
gpgcheck=0

[worksuite-development]
name=Worksuite development master
baseurl=http://xdaq.web.cern.ch/xdaq/repo/development/worksuite/master/cc7/x86_64/RPMS/
enabled=1
gpgcheck=0

17

	Document Revisions
	1 Introduction
	1.1 The flash chip of the DTH

	2 Installation
	2.1 Installation from the sources:

	3 Usage
	3.1 FlashConverter
	3.1.1 Invocation:

	3.2 Flashy
	3.2.1 Invocation
	3.2.2 Checking for empty sectors
	3.2.3 Load FPGA firmware from the Flash
	3.2.4 The Advanced menu
	3.2.5 Further command line options
	3.2.6 Batch mode

	4 Preparing a firmware image for the Flashy utility
	4.1 Bitstream options to choose when generating the bitfile of the firmware
	4.1.1 General
	4.1.3 Configuration
	4.1.4 Configuration Modes
	4.1.5 Startup
	4.1.6 Encryption, Readback and Authentication

	4.2 Generate an mcs file with Vivado

	5 Appendix
	5.1 XDAQ yum repository for xdaq version 15

